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Binary Fluids with Long Range Segregating
Interaction. I: Derivation of Kinetic and
Hydrodynamic Equations
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We study the evolution of a two component fluid consisting of ``blue'' and ``red''
particles which interact via strong short range (hard core) and weak long range
pair potentials. At low temperatures the equilibrium state of the system is one
in which there are two coexisting phases. Under suitable choices of space-time
scalings and system parameters we first obtain (formally) a mesoscopic kinetic
Vlasov�Boltzmann equation for the one particle position and velocity distribu-
tion functions, appropriate for a description of the phase segregation kinetics in
this system. Further scalings then yield Vlasov�Euler and incompressible
Vlasov�Navier�Stokes equations. We also obtain, via the usual truncation of
the Chapman�Enskog expansion, compressible Vlasov�Navier�Stokes equations.

KEY WORDS: Binary fluids; phase segregation; kinetic and hydrodynamic
equations; long-range interactions.

1. INTRODUCTION

The process of phase segregation in which a system evolves from an initial
unstable homogeneous state into a final equilibrium state consisting of two
coexisting phases is of continuing theoretical and practical interest [GSS,
FLP, L]. Such a process occurs whenever the system, which is initially at
values of the thermodynamic parameters, say temperature T0 and pressure p0 ,
corresponding to a single homogeneous phase has its parameters ``suddenly''
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changed to new values, say T and p, at which there is a coexistence of
phases.

This happens, for example, when an alloy is ``quenched'' from a high
temperature melt or solid to a low temperature solid state by sudden cooling
[GSS]. After such a quench the system finds itself in an unstable (or
metastable) situation, as far as the spatial concentrations, which have not
been able to adjust rapidly enough to the ``sudden'' quench, are concerned
and domains of the two equilibrium phases form and start growing in time.
This proceeds until there are ``in the final state'' only two regions of pure
equilibrium phases separated by an interface. Since the kinetics of the
domain growth have a profound influence on the properties of the alloy,
this problem has been and continues to be extensively studied both theoret-
ically and experimentally [GSS]. For such alloy systems the segregation
process takes place mainly through the (anti)diffusion of the two com-
ponents��from a uniformly mixed state to a demixed one. There are no
macroscopic matter or energy flows since the system is a solid and has a
high heat conductivity which keeps the temperature equal to some constant
ambient value. The only relevant conserved quantities are therefore the
particle numbers of the two components and the macroscopic equations
describing the process are fairly well established: these are the well known
Cahn�Hilliard equations [CH] and variations on them. We refer the
reader to reviews on this subject [GSS].

The situation is much less clear for phase segregation in fluids where
macroscopic flows of matter and heat are important. There are now addi-
tional conservation laws for momentum and energy and there is no general
consensus even on what hydrodynamical equations are most appropriate
for describing the macroscopic evolution of the system [S, OP, AGA]. In
particular, it is not clear which is the correct coupling between the Cahn�
Hilliard equation for the order parameter and the Navier�Stokes equation
for the fluid velocity.

To make a start on the mathematical analysis of such processes we
investigate a model binary fluid introduced in [BL] where the process of
phase segregation was studied numerically.

In the present work we derive general equations appropriate both in
the one phase and in the coexistence region. In part II we consider applica-
tions to the segregation process including an analysis of new numerical
results. Many of our discussions here will be semi-heuristic. In particular,
we will not go into detail about the domain of validity of the technical
conditions necessary for the rigorous mathematical establishment of the
results.

The model we study is composed of two types of particles, call them
red and blue. There are Nr red and Nb blue particles in a cubic box of
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volume 4=Ld; we will generally consider d=3 and use periodic boundary
conditions. The particles all have unit mass and hard core diameter a.
Particles of different kind also interact with each other through a long
range pair potential of the Kac type, having a range l and a strength Al .
By properly choosing Al , we obtain, in the limit l � �, a system whose
equilibrium properties are described by a mean-field type phase diagram
exhibiting a demixing phase transition for temperature T<Tc [LP].

This transition is essentially independent of the hard core size a and
the dimensionless microscopic particle densities \ra3 and \ba3 can there-
fore be arbitrarily small in the demixed phases. This means that we can
have a situation in which, at least in principle, the whole phase transition
is well described by a Vlasov�Boltzmann type of kinetic equation. We will
in fact see that we can, by suitably scaling space and time and the densities,
obtain, at least on the formal level, a set of nonlinear Vlasov�Boltzmann
(VB) equations, describing the evolution of the one particle distribution
functions f :(q, v, t), :=r, b.

The VB equations we derive are of a form similar to ones conjectured
for a one component fluid with hard cores and an attractive long range
interaction [DS, G]. Such a system however requires the hard cores for
stabilization against collapse [LP] and \a3 is greater than 1�3 in the liquid
phase. It is therefore not clear that a VB equation is an appropriate kinetic
description of such a liquid�vapor transition. This is the motivation for
introducing the binary model we consider here.

We discuss the scalings necessary to go from a microscopic Hamiltonian
description of the time evolution to the VB equations in Section 2 leaving
a formal derivation, in the spirit of Cercignani [C] and Lanford [Lan], to
Appendix C. The equations themselves are of the same form as those used
in [BL] for the kinetics in the coexistence regime of this system. Their
numerical results for the time evolution and the analysis of the stationary
states showed that these VB equations for the one particle distributions f :

indeed lead to the phase segregated state expected from purely equilibrium
considerations.

While the mesoscopic description in terms of the one-particle distribu-
tion functions is a great simplification compared to the full microscopic
representation, it is still more complicated than the macroscopic theory
that treats the binary system as a continuum with well defined local density
\(x, t), concentration difference .(x, t), velocity u(x, t) and temperature
T (x, t). The derivation of hydrodynamic equations from the Boltzmann
equation (which one expects to be structurally of the same form as those
describing dense binary fluids) is closely related to the problem of finding
approximate solutions of the Boltzmann equation. The reason for this is
that the fluid dynamic variables are defined and change on space and time
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scales which are very large when measured in units of the mean free path
and mean free time between collisions, i.e., the kinetic or mesoscopic scale.
Therefore, it can be expected that the system will reach a state close to
local equilibrium in a macroscopically very small time interval, meaning
that f :(x, v, t) should stay close to local Maxwellians, with parameters \:,
u and T, which change slowly on the kinetic scale. The big disparity
between the kinetic and hydrodynamic scales suggests looking for a solu-
tion of the Boltzmann equation as a series expansion in the scale parameter
which is the ratio of these two scales. Many rigorous results in this direc-
tion have been obtained in recent years, especially for the Euler (E) and the
incompressible Navier�Stokes (INS) equations. The situation is less
satisfactory in the case of the compressible Navier�Stokes (NS). This is a
consequence of the fact that while the E and INS equations correspond to
well defined scaling limits, in which the mean free path goes to zero, there
is no such scaling limit for the NS equations as can be seen from the fact
that these equations are not invariant under scaling [DEL].

Having obtained the VB equations we turn to the derivation of
hydrodynamic equations. The results available for these equations are
fewer than for the Boltzmann equation. In Section 3 we present a rigorous
derivation of the Vlasov�Euler (VE) equations for this system, which dif-
fers from the usual Euler equations by the presence of self-consistent forces
coming from the Vlasov terms. We do this by adapting to this case the
method of Caflisch [Ca80], i.e., we prove that the Hilbert expansion is
asymptotic, by showing that the remainder at any order is finite in a
suitable Sobolev norm.

We then consider in Sections 4 and 5 a modified Chapman�Enskog
expansion of the kind considered by Caflisch [Ca87] and show also in this
case that the remainder at any order is finite in the same Sobolev norm.
The term of zero order in this expansion is a Maxwellian with parameters
solving a set of dissipative new PDE's, the Vlasov�Navier�Stokes (VNS)
equations, where, beyond the usual terms present in the compressible
Navier�Stokes equations, there are diffusive terms coming from the
presence of the self-consistent force. In particular, the equation for the con-
centration can be put in the form of a gradient flux of an energy functional
[BELMII] which is similar to an exact evolution equation derived for a
microscopic model of a binary alloy. The latter has been proven to yield
the same late time phase segregation behavior as the Cahn�Hilliard equa-
tion, [GL96, GL97]. Both Vlasov�Euler and Vlasov�Navier�Stokes have
non trivial stationary solutions with the same solitonic profile as in the BV
equation.

Finally in Section 6 we consider the incompressible regime for these
equations and derive, under suitable initial conditions and scaling, a set of
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PDE's with dissipative terms involving a force linear in the concentration
(they are essentially the linearization of the analogous terms in the com-
pressible equations around a constant concentration and density profile).
Above results all rely on the crucial assumption that the initial value
problems for the hydrodynamical equations have a unique smooth solution
at least on some macroscopic time interval. We do not discuss the technical
conditions which ensure the existence of such solutions.

2. VLASOV�BOLTZMANN EQUATION FOR A
BINARY MIXTURE

We consider a system of Nr red particles with positions ! r
i and

velocities vr
i , i=1,..., Nr and Nb blue particles with positions !b

i and
velocities vb

i , i=1,..., Nb , in a 3-dimensional torus 4, interacting via two
body forces. N=Nr+Nb is the total number of particles. The potential
energy is

V(!r
1 ,..., !r

Nr
; !b

1 ,..., !b
Nb

)

= 1
2Al :

:{;

:
N:

i=1

:
N;

j=1

Ul( |!:
i &!;

j | )+ 1
2 :

:, ;

:
N:

i=1

:
N;

j=1

Wa( |!:
i &!;

j | )

(2.1)

where :, ;=r, b, Ul is the long range potential

Ul(r)=U \ r
l+ (2.2)

for some bounded, smooth non-negative function U on R+ . The factor Al

is the intensity of the long range interaction to be suitably chosen to get a
mean field type of behavior when l becomes very large compared to the
interparticle spacing [LP]. The potential Wa is the formal hard core potential

Wa(r)={�
0

if r<a
otherwise

In other words the particles are hard spheres of diameter a interacting
by elastic collisions which are color blind and by a weak repulsive long
range force between particles of different species. The total number of par-
ticles of each species as well as the total momentum and energy are
invariant during the evolution.

Choosing the size of 4 to be l (or some constant multiple thereof )
there are two characteristic length scales for this dynamics: a, the range of
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the hard core potential and l, the range of the Kac potential. We can con-
sider a third length, which depends on the density, the mean free path *
defined by the relation

*=
l3

Na2

The kinetic limit arises when there is a large separation between a and *,
corresponding to a low density (N�l3) situation. To obtain a kinetic limit
we send N and l to � while a is fixed, say 1, in such a way that *�l is finite
(Ntl2) and assume initial data almost constant on regions of size t*.
We denote by

$=
a
*

=
1
*

and assume finite

#=
*
l

The kinetic equations will be obtained in the limit $ � 0, assuming

Al=#3$2

meaning that Al is proportional to 1�N. A further limit # � 0 will provide
the hydrodynamical limit to be discussed later.

In kinetic coordinates q, that is q:
i =$!:

i , for :=r, b and i=1,..., N:

and kinetic time {=${m , {m being the microscopic time, the equations of
motion for the system are, for :=r, b and i:=1,..., N:

dq:
i:

d{
=v:

i:

(2.3)
dv:

i:

d{
=#3$2 :

N;

j;=1

K(# |q:
i:
&q;

j;
| )(1&$:;)

in

1N=[(q1 , v1 ,..., qN , vn) # 4N_R3N | |q i&qj |>$, i{ j ]

where K( |x& y| )=&({U )( |x& y| ), N=Nr+Nb , and we use the notation
qi , vi , i=1,..., N when the color is irrelevant. When two particles are in
contact (namely at distance $) they undergo an elastic collision regardless
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of their color. We neglect the event that more that two-particles are in
contact because it has vanishing Lebesgue measure. Hence the evolution
(2.3) is defined only almost everywhere.

Note that when Ntl2 then the mean force on each particle on the
kinetic scale (2.3) is of order unity. This is the reason why our original
choice of the strength Al of the potential in (2.2) was like l&2 rather than
l&3 as in the usual case [LP].

With this scaling we can get, at least formally, in the limit $ � 0 the
Vlasov�Boltzmann equation for a binary mixture of hard core particles
interacting via a weak long range potential. A formal proof of this is given
in Appendix C. The rigorous proof would require the extension of the
Lanford argument to this case, an extension that is not obvious because the
Vlasov part is not well controlled in the Lanford norms.

Even if we have discussed the derivation of the Vlasov�Boltzmann
equation only for hard spheres, from now on we consider the Vlasov�
Boltzmann equations in full generality. The function f r(q, v, {) (resp.
f b(q, v, {)) is proportional to the probability density of finding a red (resp.
blue) particle at q # 0/R3, with velocity v # R3 at time {�0. We notice
that the relation between the f : 's and the microscopic one particle densities
\:

1(!, v, {m) (normalized to N:) is given by

f :(q, v, {)= lim
$ � 0

$&1\:
1($&1q, v, $&1{)

The functions f r and f b are positive and normalized to #&3 for any
value of {. They are solutions to the equations

�{ f r+v } {q f r+F r } {v f r=J( f r, f r)+J( f r, f b)
(2.4)

�{ f b+v } {q f b+F b } {v f b=J( f b, f b)+J( f b, f r)

The Vlasov force acting on each particle is of the Kac type, meaning that
for any #>0, the forces are conservative non local forces with range #&1

defined by the position

F :(q, {)=&{q |
0

dq$ #3U(# |q&q$| ) n ;(q$, {), :=r, b, :{;
(2.5)

with U( |q| ) a smooth, non negative function of compact support and nr, nb

are the rescaled spatial densities of the red and blue particles:

n:(q, {)=|
R3

dv f (:)(q, v, {), |
0

dq n(:)(q, {)=#&3 (2.6)
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For any positive functions f and g, J( f, g) denotes the effect of the colli-
sions of particles distributed according to g on the distribution f. Its expres-
sion is given by

J( f, g)=|
R 3

dv
* |

S2
d| b( |v&v

*
|, |)[ f (v$) g(v$

*
)& f (v) g(v

*
)] (2.7)

Here b( |v|, |) is the differential cross section of the short range interaction,
| # S2 is the impact parameter and v$, v$

*
are the incoming velocities corre-

sponding to an elastic collision with outgoing velocities v, v
*

and impact
parameter |. We assume the Grad's (see [Gra]) angular cutoff condition
that b( |v|, |) is a smooth function growing at most linearly for large |v|,
i.e., b( |v|, |)=|v|_ h(|) with 0�_�1 and h a smooth bounded function
on S2 .

An important property of the collisions is the entropy production
inequality: let

N:=|
R3

dv J( f :, f :) log f :, :=1, 2

N:, ;=|
R 3

dv J( f :, f ;) log f :, :, ;=1, 2

Then N: 's as well as N1, 2+N2, 1 are non negative. Moreover N: vanishes
as usual if and only if the f : 's are Maxwellians:

f :=M(n:, u:, T :; v), :=1, 2

with

M(n, u, T; v) :=
n

(2?T )3�2 e&(v&u)2�2T (2.8)

Furthermore N1, 2+N2, 1 vanishes if and only if the two Maxwellians have
the same local temperature and mean velocities:

u:=u, T :=T, :=1, 2

This implies that the only solutions of the equations

J( f1 , f1)+J( f1 , f2)=0

J( f2 , f2)+J( f2 , f1)=0
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are Maxwellians with the same mean velocity and temperature. General
arguments suggest that all the stationary solutions of Eqs. (2.4) will be
Maxwellians with u=0, T (q)=T, and densities satisfying the equations

T log n1(q)+| dq$ #3U(# |q&q$| ) n2(q$)=C1

(2.9)

T log n2(q)+| dq$ #3U(# |q&q$| ) n1(q$)=C2

Beyond the spatially constant equilibria, there may be other spatially
non homogeneous solutions. For example, by prescribing the boundary
conditions in one dimension

lim
z � \�

n:(z)=n� :
\

one gets at small values of T a solitonic solution describing the interface
profile [BL]. We shall leave a discussion of this part for [BELMII] and
focus here on deriving macroscopic equations for the evolution of the
conserved quantities.

Before closing this section, let us define

f (q, v, {)= 1
2 [ f r(q, v, {)+ f b(q, v, {)]

as the density of finding a particle at q with velocity v at time {, indepen-
dently of its color. Moreover, we set

,(q, v, {)= 1
2 [ f r(q, v, {)& f b(q, v, {)]

The system (2.4) can be written in the following equivalent form:

�{ f +v } {q f +2F } {v f +2W } {v,=4J( f, f )
(2.10)

�{,+v } {q,+2F } {v,+2W } {v f =4J(,, f )

where F=F r+F b, W=F r&F b. We can absorb the numerical factors by
redefining U as U�2 and b as b�4 so obtaining

�{ f +v } {q f +F } {v f +W } {v,=J( f, f )
(2.11)

�{,+v } {q,+F } {v,+W } {v f =J(,, f )
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3. COMPRESSIBLE HYDRODYNAMICS

We are interested in the behavior of the system on the macroscopic
scale. To this end we introduce a scaling parameter = representing the ratio
between the kinetic and macroscopic space units and, for any t�0 and
x # =0 we set

{==&1t, q==&1x

We assume that at time zero the densities vary slowly on the microscopic
scale f i (q, v, 0)= f� (=q, v, 0) and look for solutions of (2.11) such that

f i (q, v, {)= f� i (=q, v, ={), i=r, b

with f� i smooth functions on =0_R3_R+ . For the force we have

F r(=&1x, =&1t)=&= {x |
=0

dx$ \#
=+

d

U _\#
=+ |x&x$|& n~ b(x$, t)

and a similar relation for F b. Therefore, if we assume #==, also the forces
are slowly varying functions and the f� satisfy the following system, where
we remove the ``tilde's'' because in the sequel we shall always consider only
the macroscopic variables:

�t f +v } {x f +F } {v f +W } {v,==&1J( f, f )
(3.1)

�t ,+v } {x,+F } {v,+W } {v f ==&1J(,, f )

We shall use the notation

F=K �V f, W=&K �V , (3.2)

where,

K(x)=&{x U( |x| ) (3.3)

and, for any function g we set

(K �V g)(x, t) =def |
0

dx$ K( |x&x$| ) |
R3

dv g(x$, v, t) (3.4)

We will show that the solution of the system (3.1) is close for = small
to the local equilibrium with parameters \(1), \(2), u and T satisfying the
following set of hydrodynamic equations:
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�t\+{ } [\u]=0

�t .+{ } (.u)== { } (DQ)
(3.5)

\Dt u+{P&\K V \+.K V .=&= {_
3
2\DtT+P { } u== {(} {T )&=_ : {u&=K V . } DQ

Here \=\(1)+\ (2) is the total density, .=\(1)&\ (2), P=\T

Dt :=�t+u } {

_ :=&& \{u+{u-&
2
3

I { } u+ (3.6)

Q :={
.
\

+
1

\2T
(\2&.2) K V .

{u- is the adjoint of the matrix {u, _ : {u=Tr(_ {u), I is the unit matrix,
& and D\ are the viscosity and the diffusion coefficients and } is the heat
conductivity. These are computed from the VBE. The above equations,
with ==0 will be referred to as the Vlasov�Euler equations (VE). We
assume that the initial value problem for such equations, with suitable
initial data, has a sufficiently smooth solution at least on a time interval
[0, t� ]. Under such conditions we will prove in the next section and in
Appendix A that the solution to the VBE for the binary fluid, under the
Euler scaling, converges to the Maxwellian local equilibrium with
parameters satisfying the VE equations in the interval [0, t� ], with an error
of order = (Proposition 4.1 and Corollary 4.2).

When =>0, the above equations will be referred to as the Vlasov�
Navier�Stokes equations (VNS). In Section 5, using also the arguments of
Appendix A we will show that their solutions provide an approximation up
to the order =2 to the solutions of the VBE in the Euler scaling, provided
that the initial value problem for such equations has suitably smooth solu-
tions as before. The precise statement is given in Proposition 5.1 and
Corollary 5.2.

Like for the usual Navier�Stokes equations, which are frequently and
successfully used with ==1 in physical and engineering applications,
although their derivation is restricted to small values of =, we will consider
the VNS equations with ==1 and analyze some of their properties in
[BELMII]. In order to get diffusive effects as sharp limits of the VBE, it
is necessary to go to the parabolic scaling where {==&2t and consider
simultaneously a low Mach number situation. This will be discussed in
Section 6.
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4. EULER LIMIT

We outline the proof of the convergence of the Vlasov�Boltzmann
system to the VE equations. The proof will be completed in Appendix A.
We fix the Maxwellian M(\, u, t) with \, u, T possibly depending on space
and time and denote

Lf =J(M, f )+J( f, M ) (4.1)

and

1f =J( f, M ) (4.2)

Moreover, we set

Q( f, g)= 1
2 [J(g, f )+J( f, g)] (4.3)

It is easy to check that, as for the one-component Boltzmann equation,

Lf =0 iff f =M/: , :=0,..., 4 (4.4)

where

/0=1, /i=vi , i=1,..., 3, /4=v2�2 (4.5)

Moreover, along the same lines one gets

1f =0 iff f =aM, a # R (4.6)

We shall try to solve (3.1) following [Ca80], in terms of a truncated
Hilbert expansion of the form

f = :
K

n=0

=nfn+=mRf

(4.7)

,= :
K

n=0

=n,n+=mR,

with suitably chosen positive integers K and m. The functions fn and ,n are
computed using a Hilbert expansion and the remainders Rf and R, are
defined as the difference between the solution and the truncated expansion.
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We substitute in (3.1) the formal power series

f = :
�

n=0

=nfn , ,= :
�

n=0

=n,n (4.8)

F= :
�

n=0

=nFn= :
�

n=0

=nK �V fn , W= :
�

n=0

=nWn= :
�

n=0

=nK �V ,n (4.9)

and denote by Dt the time derivative along the trajectories:

Dt=�t+v } {x

We have:

=&1Q( f0 , f0)+ :
�

n=0

=n[2Q( f0 , fn+1)+Sn]=0 (4.10)

=&1J(,0 , f0)+ :
�

n=0

=n[J(,n+1 , f0)+J(,0 , fn+1)+Tn]=0 (4.11)

where

Sn= :
(h, h$) : h, h$�1

h+h$=n+1

Q( fh , fh$)& :
(h, h$) : h, h$�0

h+h$=n

[Fh } {v fh$+Wh } {v,h$]&Dt fn

(4.12)

Tn= :
(h, h$) : h, h$�1

h+h$=n+1

J(,h , fh$)& :
(h, h$) : h, h$�0

h+h$=n

[Fh } {v,h$+Wh } {v fh$]&Dt ,n

(4.13)

In order that the formal series solve (3.1) the coefficients have to satisfy the
conditions:

Q( f0 , f0)=0
(4.14)

J(,0 , f0)=0

and, for any n�0,

2Q( f0 , fn+1)+Sn=0
(4.15)

J(,n+1 , f0)+J(,0 , fn+1)+Tn=0

As remarked in the previous section, the first of the conditions (4.14),
implies that f0 is a Maxwellian with parameters depending on x, t:

f0(x, v, t)=M(\(x, t), u(x, t), T (x, t); v) :=M(v) (4.16)
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Moreover from the second equation of (4.14) we get

,0(x, v, t)=
.(x, t)
\(x, t)

M(\(x, t), u(x, t), T (x, t); v)

for some suitable function .(x, t). Using (4.1) and (4.2) we can write (4.15)
as

Lfn+1=&Sn
(4.17)

1,n+1=&J(,0 , fn+1)&Tn

Since Sn and Tn only depend on the fk and ,k for k�n, we have first to
solve the first equation and then, once fn+1 is determined, we solve the
second one for ,n+1 .

In order to check the solvability of these equations we introduce the
Hilbert space H of measurable functions on R3 such that the scalar
product

( f, g)=|
R 3

dv f (v) g(v) M&1(v) (4.18)

is finite. In this Hilbert space the operators L and 1 are densely defined
and symmetric. Moreover, the null spaces of L and 1 are the five-dimen-
sional subspace spanned by [M/: , :=0,..., 4] introduced in (4.5) and the
one-dimensional space spanned by M/0 respectively. We denote by P and
K the projectors on such subspaces and by P==1&P and K==1&K

the projectors on their orthogonal complements. From the properties of L

and 1 it is immediate to check that

PL=0, K1=0 (4.19)

Both L and 1 are non positive and there are positive constants $
and $$

( f, Lf )�&$ &P=f &2, ( f, 1f )�&$$ &K=f &2 (4.20)

Moreover

L=&&+K
(4.21)

1=&&+3
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where

&(x, v, t)=|
Re3

dv
*

b( |v&v
*

|) M(\(x, t), u(x, t), T (x, t); v
*

) (4.22)

is a strictly positive function such that

&0(1+|v| )_�&(x, v, t)�&1(1+|v| )_ (4.23)

for some positive constants &0 and &1 provided that \ and T are bigger than
some fixed positive constants. Furthermore, K and 3 are compact
operators on H. Therefore, using the Fredholm alternative theorem we can
conclude the existence of solutions to (4.17) provided that Sn # P=H and
Tn+J(,0 , fn+1) # K=H. These conditions can be verified inductively, as
in the usual one-component Boltzmann equation. We now write the condi-
tions for n=0 which determine the macroscopic equations for \, u, T and
.: Since P[{v f0] and P[{v,0] have no component along /0 , it is easy to
check that the condition PS0=0 can be written explicitly as

�t\+{x } [\u]=0

\[�tu+(u } {x) u]= &{xP+\K V \&.K V . (4.24)

\[�te+(u } {x) e]+P {x } u=0

where V denotes the usual convolution, P=\T is the equation of state for
the pressure in the perfect gas and e=3T�2 is its internal kinetic energy.
On the other hand, since KJ=0 and K{v=0, the condition KT0=0
becomes KDt ,0=0 which is explicitly written as

�t .+{x } [.u]=0 (4.25)

Equations (4.24) and (4.25) represent the Euler equations for the
binary mixture. They differ from the usual Euler equations by the presence
of the equation (4.25) for . and for the nonlinear self consistent force terms
due to the long range Kac interaction. We will refer to them as the
Vlasov�Euler equations (VE ). Existence of solutions to the initial value
problem for the system (4.24)�(4.25) requires some analysis but we do not
discuss this. We simply assume that, for sufficiently smooth initial data a
unique solution of the system exists and stays smooth up to some time t� .

Given such a solution, the functions f1 and ,1 can be found by solving
(4.17) with n=0. In consequence, f1 is determined up to p1 # PH and ,1

up to q1 # KH. The procedure can then continue by taking advantage of
the arbitrariness of p1 and q1 to satisfy the conditions PS1=0, KT1=0.
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In this way the functions fn and ,n can be found for any n. Classical results
by Grad [Gra] provide the smoothness and decay properties we use
below.

Now we go back to the truncated expansions (4.7). Once .n and ,n

are computed for n=0,..., K, we can look for the equations for the remain-
ders Rf and R, . A straightforward calculation shows that, in order that f
and , satisfy (3.1), Rf and R, have to solve the equations

Dt Rf+F } {vRf+W } {vR,

==&1LRf+L(1)Rf+=m&1[J(Rf , Rf)+Af]
(4.26)

Dt R,+F } {vR,+W } {vRf

==&11R,+=&13� Rf+1 (1)R,+=m&1[J(R, , Rf)+A,]

where

L(1)g= :
K

h=1

=h&1[J( fh , g)+J(g, fh)]

(4.27)

3� g=J \ :
K

n=0

=n,n , g+ , 1 (1)g=J \g, :
K

h=1

=h&1fh+
Af ==K&2m+1 \ :

(h, h$) : h, h$�1
h+h$>K+1

=h+h$&K&1Q( fh , fh$)

& :
(h, h$) : h, h$�0

h+h$>K

=h+h$&K[Fh } {v fh$+Wh } {v,h$]&Dt fK+
(4.28)

A,==K&2m+1 \ :
(h, h$) : h, h$�1
h+h$>K+1

=h+h$&K&1J(,h , fh$)

& :
(h, h$) : h, h$�0

h+h$>K

=h+h$&K[Wh } {v fh$+Fh } {v,h$]&Dt ,K+
and

F= :
K

n=0

=nFn+=mK �V Rf

(4.29)

W= :
K

n=0

=nWn+=m K �V R,
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The expressions of Af and A, show that it is convenient to choose
K�2m&1 in order to get them bounded as = � 0.

The construction of the solution Rf , R, of (4.26) is obtained using a
fixed point argument to handle the nonlinear terms in the equations.

In Appendix A we shall sketch the proof of the Proposition below,
which extends the similar result proved for the one-component Boltzmann
gas without long-range interactions in [Ca80] and [Lac]. We assume for
simplicity periodic boundary conditions, namely 0 is the 3-dimensional
torus of unit side. The potential of the long range force is assumed C�, non
negative and of compact support. Of course such assumptions could be
relaxed, but we will not try to examine the most general setup. Moreover
we use the norm

& f &:, l, s= sup
v # R3

[e:v2
(1+|v| 2)l�2 | f ( } , v)| s] (4.30)

and | f | s is the Sobolev norm of order s.
We will refer below to sufficiently smooth solutions to the VE equa-

tions meaning solutions which are in Hs for some sufficiently large s and
such that the inequalities

T0�T�T1 , \0�\\.�\1

are verified for suitable positive constants T0 , T1 , \0 and \1 .

Proposition 4.1. Suppose that (\, u, T, .) is a solution to the
Vlasov�Euler Eqs. (4.24), (4.25) sufficiently smooth in the time interval
[0, t� ]. Then there are positive constants =0 and C such that, for =<=0 a
unique classical solution to the system (4.26) with m�4 exists and satisfies
the bounds

sup
t # [0, t� ]

&Rf ( } , t)&:, l, s�C= sup
t # [0, t� ]

[&Af ( } , t)&:, l, s+&A,( } , t)&:, l, s]
(4.31)

sup
t # [0, t� ]

&R,( } , t)&:, l, s�C= sup
t # [0, t� ]

[&Af ( } , t)&:, l, s+&A,( } , t)&:, l, s]

for any positive :<T� �2, T� =def supx # 0, t # [0, t� ] T (x, t), l>3, s�2.

Corollary 4.2. Under the assumptions of Proposition 3.1, for
=<=0 there is a smooth solution ( f =

t , ,=
t) to the rescaled Vlasov�Boltzmann
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equations (3.1) and moreover, denoting by Mt the Maxwellian with param-
eters evolving according to the Euler equations, it satisfies:

sup
0�t�t� _& f =

t&Mt &:, l, s+",=
t&

.t

\t
Mt":, l, s&�C=

5. NAVIER STOKES CORRECTION

The Navier�Stokes corrections to the hydrodynamical equations on
the Euler scale are usually obtained by means of a suitable resummation of
the Hilbert series expansion called the Chapman�Enskog expansion. For
our purposes it is convenient to look at a modified version of the expansion
proposed by Caflisch [Ca87].

We use the notation: for n�0, f� n=Pfn , f� n=P=fn , ,� n=K,n ,
,� n=K=,n , Fn=K �V fn , Wn=K �V ,n . The terms in the expansions are
given as follows: we set Ms :=M(1, u, T );

f0=\Ms , ,0=.Ms , f� 1=0, ,� 1=0 (5.1)

Lf� 1=P=[Dt f0+F0 } {v f0+W0 } {v,0] (5.2)

1,� 1=&J(,0 , f� 1)+K= _Dt,0&=
.
\2 P[Dt f� 1]+W0 } {v f0+F0 } {v,0&

(5.3)

P[Dt( f0+=f� 1)+F0 } {v( f0+=f� 1)+W0 } {v(,0+=,� 1)]=0 (5.4)

K[Dt(,0+=,� 1)+W0 } {v( f0+=f� 1)+F0 } {v(,0+=,� 1)]=0 (5.5)

Lf� 2=&2Q( f1 , f1)+P=[Dt( f� 1+=f� 2)

+[F0 } {v f1+F1 } {v f0+W0 } {v,1+W1 } {v,0]] (5.6)

1,� 2=&.J(Ms , f2)&J(,1 , f1)+K= _Dt,� n+
.
\2 P[Dt f� 1]+=Dt ,� 2

+[W0 } {v f1+W1 } {v f0+F0 } {v,1+F1 } {v,0]& (5.7)

P _Dt f2+ :
(h, h$) : h�0, h$>0

h+h$=2

[Fh } {v fh$+Wh } {v,h$]&=0 (5.8)

K _Dt,2+ :
(h, h$) : h�0, h$>0

h+h$=2

[Fh } {v,h$+Wh } {v fh$]&=0 (5.9)

1104 Bastea et al.



Before giving conditions defining the higher order terms of the expansion
let us comment about previous conditions: Eqs. (5.1)�(5.9) have to be
solved in the order they are written: (5.2) and (5.3) are used to determine
f� 1 and then ,� 1 in terms of the hydrodynamical parameters (\, u, T, .) and
their derivatives; as a consequence (5.4) and (5.5) only involve (\, u, T, .)
and represent the hydrodynamical equations we are looking for. Because of
(5.1) f1 and ,1 are completely determined. Then (5.6) and (5.7) can be
solved to find f� 2 and ,� 2 , depending only on f0 , f1 , ,0 , ,1 and on the
hydrodynamical parts of f2 and ,2 . Finally, (5.8) and (5.9) are linear equa-
tions in the hydrodynamical part of f2 and ,2 which can be used to deter-
mine them.

We notice that the term proportional to = in (5.3) has been included
to avoid third order derivatives in the hydrodynamical equations. This is
usually done in the standard Chapman�Enskog expansion by expanding
the time derivatives in powers of =.

For n�2 we set:

Lf� n+1=& :
k, j�1

k+j=n+1

2Q( f j , fk)+P= _Dt( f� n+=f� n+1)

+ :
(h, h$) : h, h$�0

h+h$=n

[Fh } {v fh$+Wh } {v,h$]& (5.10)

1,� n+1=&.J(Ms , fn+1)& :
k, j�1

k+j=n+1

J(,k , fj )+K= _Dt ,� n+=Dt ,� n+1

+ :
(h, h$) : h, h$�0

h+h$=n

[Fh } {v,h$+Wh } {v fh$]& (5.11)

P _Dt fn+1+ :
(h, h$) : h�0, h$>0

h+h$=n+1

[Fh } {v fh$+Wh } {v,h$]&=0 (5.12)

K _Dt ,n+1+ :
(h, h$) : h�0, h$>0

h+h$=n+1

[Fh } {v,h$+Wh } {v fh$]&=0 (5.13)

The procedure used for f2 and ,2 can be repeated to get fn and ,n for any
n>2.

As for the Euler limit discussed in the previous section, instead of
looking for the convergence of the expansion we consider its truncation
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(4.7) where the functions fn and ,n are computed according to the proce-
dure just explained, but setting fn=0, ,n=0 for n�K+1. The remainders
Rf and R, have to be solutions of the equations

DtRf+F } {vRf+W } {vR,

==&1LRf+L(1)Rf+=m&1[J(Rf , Rf)+Af]
(5.14)

DtR,+W } {vRf+F } {vR,

==&1[1R,+3� Rf]+1 (1)R,+=m&1[J(R, , Rf)+A,)]

where F and W are given by (4.29), L(1), 1 (1) and 3� are given by (4.27),
while the expressions of Af and A, are slightly different from (4.28), and
are:

Af ==K&2m+1 \ :
(h, h$) : h, h$�1
h+h$>K+1

=h+h$&K&1Q( fh , fh$)

& :
(h, h$) : h, h$�0

h+h$>K

=h+h$&K[Fh } {v fh$+Wh } {v,h$]

&Dt f� K&P[F0 } {v fK+W0 } {v,K]+ (5.15)

A,==K&2m+1 \ :
(h, h$) : h, h$�1
h+h$>K+1

=h+h$&K&1J(,h , fh$)

& :
(h, h$) : h, h$�0

h+h$>K

=h+h$&K[Wh } {v fh$+Fh } {v,h$]

&Dt ,� K&K[W0 } {v fK+F0 } {v,K]+ (5.16)

We now exploit the Eqs. (5.2)�(5.5) in order to obtain the
Navier�Stokes equations for the binary mixture with long range forces.

Note that in (5.2) the force terms do not contribute because
P= {vMs=0. Therefore f� 1 has the same expression as for the one compo-
nent gas without self-interaction: recall that

P=(Dt f0)=M _ :
3

i, j=1

Ai, j �iuj+ :
3

i=1

Bi �iT & (5.17)
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with

Ai, j=
1
T \v~ iv~ j&

v~ 2

3
$i, j+ , Bi=\v~ 2

2
&

5
2

T+ v~ i
T 2

and v~ =v&u.
Therefore

f� 1=&�1 :
3

i, j=1

Ai, j �iuj&�2 :
3

i=1

Bi �iT (5.18)

with �1 and �2 non negative smooth functions of |v~ |. Moreover,
P[{v f� 1]=0 because f� 1 is orthogonal to the invariants. On the other hand
(Ms/: , {v,� 1)=0 for :=0,..., 3, because ,� 1 is orthogonal to the constants.
Furthermore

| dv[F0 } {v( f0)+W0 } {v,0]=0 (5.19)

| dv v~ [F0 } {v( f0)+W0 } {v,0=&F0\&W0. (5.20)

Hence the mass equation is

�t \+{ } (\u)=0 (5.21)

and the momentum equation is

\Du
t u+{P=&= { } _+\F0+.W0 (5.22)

with Du
t =�t+u } { and

_i, j := &&(�jui+�iuj&
2
3 $i, j { } u)

and

&=| dv �1( |v~ | ) A2
1, 2
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In order to compute the equation for the energy and for the concentration
we need the expression of ,� 1 , which has to be computed using (5.3). This
implies

,� 1=1 &1K= _Dt ,0&=
.
\2 P[Dt f� 1]+W0 } {v f0+F0 } {v,0&J(,0 , f� 1)&

(5.23)

We are interested in computing the component of {v,� 1 along M/4 i.e., after
an integration by parts:

(M/4 , {v,� 1)=&| dv~ v~ ,� 1 (5.24)

Since J(,0 , f� 1)=(.�\) Lf� 1&1f� 1 , we get

1 &1J(,0 , f� 1)=
.
\

1 &1Lf� 1& f� 1=
.
\

1 &1P=(Dt f0)& f� 1

after using (5.2) to get the second equality The second term does not con-
tribute to (5.24) since f� 1 is orthogonal to Mv~ . Hence, by (5.18),

| dv v~ 1 &1J(,0 , f� 1)=
.
\ | dv~ v~ 1 &1 _v~ } {T

M
2T 2 (v~ 2&5T )& (5.25)

the term proportional to {u is odd in v~ and hence does not contribute to
the previous expression. Now we compute

K=[Dt(.Ms)+\W } {vMs+,F } {vMs]

=.Du
t (Ms)+.v~ } {Ms+Ms v~ } {.+\W } {vMs+.F } {vMs (5.26)

We have

.Du
t (Ms)=

Ms

2T 2 .Du
t T (v~ 2&3T ]&{vMs.Du

t u

Since the first term is even in v~ , only the second term contributes to
� dv v~ 1&1

M in (5.25). By using the equation for the momentum we get

Du
t u=

1
\

[&{P+\F+.W]&
=
\

{ } _ (5.27)
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Moreover

_.
\

{P&.F&
.2

\
W+\W+.F& } {vMs=_.

\
{P+W

\2&.2

\ & } {vMs

Now

&
.
\

{P }
v~
T

Ms+Msv~ } {.=_&.
1
T

{T&
.
\

{\+{.& } Msv~

=_&.
1
T

{T+\ {
.
\& } Ms v~

and

&.
1
T

v~ } {TMs+.v~ } {Ms

=_&
1
T

{T+\ v~ 2

2T 2&
3

2T+& .v~ } {TMs+
.
T

Msv~ �v~ } {u

=. {T } Msv~ _ v~ 2

2T 2&
5

2T&+
.
T

Msv~ �v~ } {u (5.28)

The last term in (5.28) does not contribute to (5.24). Since the first term
in the r.h.s of (5.28) cancels out with the term in (5.25) (remember that
M=\Ms) we have

r.h.s (5.26)=Mv~ _{
.
\

&
W

\2T
(\2&.2)&=

.
\2 { } _& (5.29)

It is now easy to check that in the computation of the l.h.s. of (5.23) the
last term of (5.29) is compensated by the term =(.�\2) P[Dt f� 1]. Collecting
terms we get

(Ms/4 , {v,� 1)=&D _{
,
\

&
W

\2T
(\2&,2)& (5.30)

where

D :=| dv Mv~ i1 &1v~ i (5.31)
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The other terms appearing in the equation for the energy are com-
puted in the standard way:

| dv~ /4[. } {f� 1+F0 } {v f� 1+W0 } {v,� 1]=0

(5.32)

{ } | dv~ /4 f� 1=&{ } [} {T ]

with

}=| dv~ �2B2
i

Moreover

| dv /4F0 } {v f� 1=&| dv v~ } F0 f� 1=0

| dv /4W0 } {v,� 1=&| dv v~ } W0,� 1=&W0 } DQ

with

Q :={
.
\

&
1

\2T
W(\2&.2) (5.33)

Therefore, the equation for the energy is

3
2\DtT+ p { } u== {(} {T )&=_ : {u&=W } DQ (5.34)

Finally, to get the equation for the concentration we have to exploit
the condition (5.5).

K[Dt(.M+=,� 1)]=�t .+| dv v } {.M+= | dv v } {,� 1

=�t .+{ } (u.)+={ } | dv v~ ,� 1 (5.35)

The last term has already been computed in (5.30). Therefore, the equation
for . is

�t .+{ } (.u)== { } (DQ) (5.36)

where Q is given in (5.33).
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Recalling the definitions of F0 and W0 we finally get the Vlasov�
Navier�Stokes equations (VNS) for a binary mixture given by (3.5).

As for the Euler limit, the arguments in the Appendix A prove the
following Proposition 5.1 which holds under the same assumptions as
before Proposition 3.1: periodic boundary conditions and smoothness of
the long range potential.

Proposition 5.1. Suppose that for =>0 small enough there is a
solution (\=, u=, T =, .=) to the Vlasov�Navier�Stokes equations (3.5) suf-
ficiently smooth in the time interval [0, t� ] independent of =. Then there are
positive constants =0 and C such that, for =<=0 an unique classical solution
to the system (5.14) with m�4 exists and satisfies the bounds

sup
t # [0, t� ]

&Rf ( } , t)&:, l, s�C= sup
t # [0, t� ]

[&Af ( } , t)&:, l, s+&A,( } , t)&:, l, s]
(5.37)

sup
t # [0, t� ]

&R,( } , t)&:, l, s�C= sup
t # [0, t� ]

[&Af ( } , t)&:, l, s+&A,( } , t)&:, l, s]

for any :<T� �2, T� =def supx # 0, t # [0, t� ] T =(x, t), l>3, s�2.

Corollary 5.2. Under the assumptions of Proposition 3.1, for =<=0

there is a smooth solution ( f =
t , ,=

t) to the rescaled Vlasov�Boltzmann equa-
tion (3.1) and moreover, denoting by Mt the Maxwellian with parameters
evolving according to the Vlasov�Navier�Stokes equations, it satisfies:

sup
0�t�t� _& f =

t&Mt&=f1&:, l, s+",=
t&

.t

\t
Mt&=,1":, l, s

�C=2&
6. INCOMPRESSIBLE NAVIER�STOKES LIMIT

In this Section we consider a different scaling limit such that one can
get hydrodynamic equations with dissipative terms of order 1 instead of
order = as in the previous section. We choose also in this case #== but we
use the parabolic space time scaling

t � =&2t, x � =&1x

After rescaling, Eqs. (2.11) become:

�t f +=&1v } {x f +=&1F } {v f +=&1W } {v,==&2J( f, f )
(6.1)

�t,+=&1v } {x ,+=&1F } {v,+=&1W } {v f ==&2J(,, f )

with F and W given by (3.2).
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We shall solve (6.1) as in the Euler case in terms of a truncated
Hilbert expansion of the form

f = :
K

n=0

=nfn+=mRf

(6.2)

,= :
K

n=0

=n8n+=mR8

with suitably chosen positive integers K and m, but in this case we choose
in a different way the terms of order 0 in the expansion.

f0=M0 , ,0=0

where M0 is a Maxwellian with parameters \� and T� some fixed constants
and u=0. This implies the vanishing of the forces at the lowest order:
W0=F0=0. We remark that choosing the first order term in the expansion
to be a global Maxwellian is essential to the incompressible limit set up.
The choice ,0=0 is made for simplifying the computations. By plugging
(6.2) in the rescaled Boltzmann equations (6.1), one easily obtains the
conditions for the higher order terms in the expansions:

Lf1=0 (6.3)

1,1=0 (6.4)

for 0�n�K&1:

Lfn+2+ :
(h, h$) : h, h$�1

h+h$=n+2

Q( fh , fh$)

= :
(h, h$) : h>0, h$�0

h+h$=n+1

[Fh } {v fh$+Wh } {v,h$]+v } {x fn+1+�t fn (6.5)

1,n+2+ :
(h, h$) : h, h$�1

h+h$=n+2

J(,h , fh$)

= :
(h, h$) : h, h$�0

h+h$=n+1

[Fh } {v,h$+Wh } {v fh$]+v } {x,n+1+�t,n (6.6)
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Moreover

�tRf+=&1[v } Rf+F } {vRf+W } {v R,]

==&2LRf+=&1L(1)Rf+L(2)Rf+=m&2[J(Rf , Rf )+Af ]
(6.7)

�tR,+=&1[v } R,+F } {vR,+W } {vRf ]

==&21R,+=&11 (1)R,+=&13� (1)Rf+1 (2)R,+3� (2)Rf

+=m&2[J(R, , Rf )+A,]

where

L(1)g=J( f1 , g)+J(g, f1), L(2)g= :
K

h=2

=h&2[J( fh , g)+J(g, fh)]

3� (1)g=J(,1 , g), 3� (2)g=J \ :
K

n=2

=n&2,n , g+ (6.8)

1 (1)g=J(g, f1), 1 (2)g= :
K

h=2

=h&2J(g, fh)

Af ==K&2m+2 \ :
(h, h$) : h, h$�1
h+h$>K+2

=h+h$&K&2Q( fh , fh$)

& :
(h, h$) : h, h$�0
h+h$>K+1

=h+h$&K&1[Fh } {v fh$+Wh } {v,h$]

&�t fK&1&v } {x fK&= �fK+
(6.9)

A,==K&2m+1 \ :
(h, h$) : h, h$�1
h+h$>K+2

=h+h$&K&2J(,h , fh$)

& :
(h, h$) : h, h$�0
h+h$>K+1

=h+h$&K&1[Wh } {v fh$+Fh } {v,h$]

&�t ,K&1&v } {x,K&= �,K+
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and F and W are given by

F= :
K

n=1

=nFn+=mK �V Rf

(6.10)

W= :
K

n=1

=nWn+=m K �V R,

with Fn=K �V fn , Wn=K �V ,n .
We now find the expressions of the first terms in the expansions

f1 , ,1 , f2 , ,2 . From (6.4) we get

,1=.1 M0

and from (6.3) we have

f1=M0(v) \\1+u1 }
v
T�

+%1

v2&3T�
T� 2 +

where \1 , u1 , %1 are to be determined as functions of x, t. By (6.5) with
n=0 we obtain

P(v } {x f1+F1 } {v f0)=0

But

P[v } {x f1]=M0 _\1+
v2&3T�

2T� 2 + {x } u1+
v
T�

} {x(T� \1+\� %1)&
while

P[F1 } {v f0]=&M0

v
T�

} F1

Hence we find the conditions

{x } u1=0, {x _\1+%1+| dy U( |x& y| ) \1( y)&=0 (6.11)
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On the other hand,

P=[F1 } {v f0]=0

so

f2=L&1[P=v } {x f1]&L&1J( f1 , f1)+ f� 2

with f� 2 # Null L.
Therefore f2 has the usual expression

f2=
1
2

:
3

i, j=1

A i, j[u1, i u1, j&�1 �i u1, j]+ :
3

i=1

Bi[%1u1, i&�2 �i %1]

+
1
2

M0%2
1 P= _\v2&3

2 +
2

& (6.12)

From (6.6) with n=0 we get the expression for ,2 :

,2=1 &1[v } {x,1+W0 {v f0&J(,1 , f1)]+,� 2

with ,� 2 # Null 1.
Moreover, by (6.3)

1 &1J(,1 , f1)=&.11 &11f1=&.1 f1

Hence

,2=.1 f1+_{x .1&
1
T�

W1& } 1 &1[vM0]+,� 2

From (6.5) with n=1 we get

�t u1+u1 } {xu1=&{x p+F2+& 2xu1+\1F1+.1 W1

and

5
2 [�t%1+u1 } {x%1]=u1 } F1+} 2x%1

since F2={xG, with G(x)=� dy U( |x& y| ) \2( y), putting p� = p&G, the
previous equation reduces to

�t u1+u1 } {xu1=&{x p� +& 2xu1+\1F1+.1W1
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which is the usual incompressible Navier�Stokes equation with the self-
consistent force

\1 F1+.1W1=&\1 {x | dy U( |x& y| ) \1( y)+.1 {x | dy U( |x& y| ) .1( y)

Finally from (6.4) with n=1 we get the equation for .1

�t .1+u1 } {x.1=D _1
\�

2x.1&
1
T�

2x | dy U( |x& y| ) .1( y)]&
with

D=&| dv v } 1 &1(vM ) (6.13)

Summarizing, dropping the index 1, the set of equation for \, u, %, ,, p
is:

�t u+u } {xu=&{x p+& 2xu+\F+.W

5
2

[�t %+u } {x%]=u } F+k 2x%

�t .+u } {x.=D _1
\�

2x.&
1
T�

2x | dy U( |x& y| ) .( y)]&
F= &{x | dy U( |x& y| ) \( y) (6.14)

W={x | dy U( |x& y| ) .( y)

{x _\+%+| dy U( |x& y| ) \( y)&=0

{x } u=0

The equation for . is linear unlike the one we get in the VNS equations,
but there is still a non linear term in . in the momentum equation. The
equation for % which corresponds to the deviation in the temperature
decouples from the rest. In fact, if we consider a solution to the previous
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equation with an initial datum \=const, %=const such conditions persist
in time and u and . have to solve the simplified set of equations

�t u+u } {xu= &{x p+& 2xu+.W

�t .+u } {x.=D _1
\�

2x.&
1
T�

2x | dy U( |x& y| ) .( y)]&
(6.15)

W={x | dy U( |x& y| ) .( y)

{x } u=0

In Appendix B there is the proof of the following proposition:

Proposition 6.1. Suppose that for =>0 small enough there is a
solution (\, u, T, .) to the incompressible Navier�Stokes equations (6.14)
sufficiently smooth in the time interval [0, t� ] independent of =. Then there
are positive constants =0 and C such that, for =<=0 a unique classical solu-
tion to the system (6.7) exists and satisfies the bounds

sup
t # [0, t� ]

&Rf ( } , t)&:, l, s�C= sup
t # [0, t� ]

[&Af ( } , t)&:, l, s+&A,( } , t)&:, l, s]
(6.16)

sup
t # [0, t� ]

&R,( } , t)&:, l, s�C= sup
t # [0, t� ]

[&Af ( } , t)&:, l, s+&A,( } , t)&:, l, s]

for any :<T� �2, l>3, s<m.

Corollary 6.2. Under the assumptions of Proposition 3.1, there is
for =<=0 a smooth solution ( f =

t , ,=
t) to the rescaled Vlasov�Boltzmann

equation (6.1) and moreover, denoting by Mt the Maxwellian with param-
eters evolving according to the incompressible Navier�Stokes equations
(6.14), it satisfies:

sup
0�t�t�

& f =
t&M0&=f1&:, l, s+&,=

t&M0&=,1&:, l, s�C=2]

APPENDIX A

We present a sketch of the proof of Proposition 3.1 in the case of hard
spheres, where &(v)r |v| for large v's. The extension to more general cross

1117Binary Fluids with Long Range Segregating Interaction. I



sections is possible along the lines proposed in [DE], but we do not dis-
cuss it. The smoothness and decay properties of the expansion terms
are obtained by now standard methods ([Ca80, DEL, ELM94, ELM95,
ELM98, ELM99]) which allow to prove the following

Theorem A.1. Given =>0, assume that there exists a sufficiently
smooth solution of the Vlasov�Euler equations (4.24) and (4.25) in the
time interval [0, t� ]. Then for any j>3, s<s0 and 0<:<T*=
sup(x, t) # 0_[0, t� ] T (x, t) there is a constant c>0 such that the terms in the
expansion fi , , i , i=1,..., K, with K=2m, solutions of the Eqs. (5.8)�(5.7)

& fi &:, j, s�c, &,i&:, j, s�c (A.1)

&�v fi&:, j, 2�c, &�v ,i &:, j, 2�c (A.2)

We need bounds on the remainders Rf and R, .
We set

Rr#R(1)=Rf&R, , Rb#R(2)=Rf+R, (A.3)

The reason is that terms like W } {vR, and F } {vRf in (4.26) are not
well suited when some force term is present to represent the solutions of the
equations in terms of characteristics, which is essential in the method we
are going to use. The equations for the new variables are:

Dt R(1)+F (1) } {vR(1)

==&1[\ (1)L� R(1)+\(1)3� R(2)+\ (2)1� R(1)]+L1 R(1)

+12R(1)+31R(2)+=m&1[J(R(1), R(1))+J(R(1), R(2))+A(1)]
(A.4)

Dt R(2)+F (2) } {vR(2)

==&1[\ (2)L� R(2)+\(2)3� R(1)+\ (1)1� R(2)]+L2 R(2)

+11R(2)+32R(1)+=m&1[J(R(2), R(2))+J(R(2), R(1))+A(2)]

where M� is the Maxwellian M with \=1 and

fj =
1
2 [ f (1)

j + f (2)
j ], ,j=

1
2 [&f (1)

j + f (2)
j ]

L� h=J(M� , h)+J(h, M� )

3� h=J(M� , h), 1� h=J(h, M� )
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Lih=J \ :
K

j=1

= j&1f (i)
j , h)+J \h, :

K

j=1

= j&1f (i)
j +

1i h=J \h, :
K

j=1

= j&1f (i)
j + , 3ih=J \ :

K

j=1

= j&1f (i)
j , h+

A(1)=Af+A, , A(2)=Af&A,

Following Caflisch [Ca80] we now decompose the remainders in low
and high velocity parts, by looking for solutions to Eqs. (A.4) in the form

R(1)=- \(1)M� g(1)+- M* h(1), R(2)=- \(2)M� g (2)+- M* h(2)

M* is a global Maxwellian with a temperature T*. We have

Dt g(1)+F (1) } {g(1)

==&1[\(1)L� g(1)+- \(1)
- \(2) T� g (2)+\(2)G� g(1)]

+=&1/_&1 _- \(1)(K*h(1)+K*T h(2))+
\(2)

- \ (1)
K*G h(1)&

(A.5)

Dth(1)+F (1) } {h(1)

=_[+(1)+F (1) } +$(1)] - \(1) g(1)+F (1) } +$
*

h(1)

+=&1\1) _&&+/� (K*h (1)+K*Th (2))+
\(2)

\(1) (&&G+K*Gh(1))&
+L1(_ - \(1) g (1)+h(1))+G2(_ - \(1) g(1)+h(1))

+T1(_ - \(2) g (2)+h(2))

+=m&1[&*Q*(_\(1)g(1)+h(1), _\ (1)g(1)+h(1))

+&*Q*(_\(1)g(1)+h (1), _\ (2)g(2)+h(2))+A(1)]

The equation for g(2), h(2) is obtained by the exchange 1 � 2 where

/(v)={1,
0,

|v|�#
otherwise

/� =1&/ (A.6)

+(i)=
1
2

Dt(log M� ), +$(i)=
1
2

\(i) {v log M� , i=1, 2

(A.7)

+$
*

=
1
2

{v log M
*

, _=� M�
M*
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L� f =
1

- M�
L� - M� f )=(&&+K ) f

L*f =
1

- M*
L - M* f )=&&*+K*f

T� f =
1

- M�
3� - M� f

G� f =
1

- M�
1� - M� f=(&&G+K� G) f

K*T=
1

- M*
3� - M* f (A.8)

G*f =
1

- M*
1� - M* f=(&&*G+K*G) f

Gi f =
1

- M*
1i - M* f, i=1, 2

Li f =
1

- M*
Li - M* f, i=1, 2

Ti f =
1

- M*
3i - M* f, i=1, 2

&*Q*( f, l)=
1

- M*
Q(- M* f, - M* l)

(A.9)

&*J*( f, l)=
1

- M*
J(- M* f, - M* l)

Linear Problem

We solve first the linear problem for gi , hi , i=1, 2, assuming that F (i)

are given functions such that

&F (i)&�+&{x F (i)&�<:F (A.10)
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We consider the linear system

Dt g(1)+F (1) } {g(1)

==&1[\(1)L� g(1)+- \(1)
- \(2) T� g (2)+\(2)G� g(1)]

+=&1/_&1 _- \(1)(K*h(1)+K*Th(2))+
\(2)

- \(1)
K*G h(1)&

(A.11)

Dt h(1)+F (1) } {h(1)

=_[+(1)+F (1) } +$(1)] - \(1) g(1)+F (1) } +$
*

h(1)

+=&1\1) _&&+/� (K*h(1)+K*Th (2))+
\(2)

\(1) (&&G+K*Gh(1))&
+L1(_ - \(1) g(1)+h(1))+G2(_ - \(1) g(1)+h(1))

+T1(_ - \(2) g(2)+h(2))+=m&1D(1)

and the equation for g(2), h(2) obtained by the exchange 1 � 2. Here F (1)

has to be considered as a given force.
We use the integral form of (A.11) [ELM98]:

g(i)(t, x, v)=|
t

t&
ds H (i)(s, .(i)

s&t(x, v)) exp {&|
t

s
ds$

1
=

&~ (i)(. (i)
s$&t(x, v))=

(A.12)

where &~ (i)=\ (i)&+\ ( j)&G , . (i)
t (x, v) the characteristics of the equation

�t f +v } {x f +F (i) } {v f =0 (A.13)

and

H (1)==&1[\(1)Kg(1)+- \(1)
- \(2) T� g(2)+\(2)KG g(1)]

+=&1/_&1 _- \(1)(K*h(1)+K*Th(2))+
\(2)

- \(1)
K*G h(1)& (A.14)

and H (2) is given by the same expression after the exchange 1 � 2.

h(i)(t, x, v)=|
t

t&
ds H$(i)(s, .(i)s&t (x, v)) exp {&|

t

s
ds$

1
=

&̂(i)(.(i)s$&t (x, v))=
(A.15)

with

&̂(i)=&~ (i)&=+$
*

} F (i)
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(which is positive for = sufficiently small, depending on :F , since &~ (i) grow
linearly at high velocities) and

H$(1)==&1\(1) _/� (K
*

h (1)+K*Th (2))+
\(2)

\(1) (K*G h(1))&
+L(1)(_ - \(1) g(1)+h (1))+G(2)(_ - \ (1) g(1)+h(1))

+T (1)(_ - \(2) g(2)+h(2))

+_[+(1)+F (1)+$(1)] - \ (1) g(1)+=m&1D(1) (A.16)

We do not write explicitly the equations for g(2), h(2) in integral form.
In the following we use the compact notation: g=[g(1), g(2)] and h=
[h(1), h(2)]. Below we use the notation & }&l, s=& }&0.l, s and & }&l=& }&0 .l, 0 .
Generalizing the method by Caflisch [Ca80] to our case, we get bounds
for the norms & }&l of g(i), h(i) in terms of the L2 norm of g (i) in the form

&h&r�=(1+:F) &g&L2
+=m |D| r&1

(A.17)
&g&r�&g&L2

+=m+1 |D| r

provided that =, =0 for some suitable =0 positive and finite for any finite :F .
To conclude the argument we need a bound for &g&L2

=�2
i=1 &g(i)&L2

in
terms of the L2 norm of D. This last step is not standard so that we give
a sketch of the proof.

To estimate &g&L2
, we multiply the first equation in (A.11) by g(i),

i, j=1, 2, i{ j, respectively, integrate over x, v and finally sum over i=1, 2

1
2

d
dt

[&g(1)&2
L2

+&g(2)&2
L2

]

==&1[(- \(1) g(1), L - \(1) g(1))+(- \(2) g(2), L - \(2) g2)]

+=&1[((- \(2) g(1), M� &1�2J(M� , - M� - \(1) g(2)))

+(- \(1) g(2), M� &1�2J(M� , - M� - \(2) g(1)) )

+(- \(2) g(1), M� &1�2J(- M� - \(2) g(1), M� ))

+(- \(1) g(2), M� &1�2J(- M� - \(1) g(2), M� ))]

+=&1 �/_&1 _- \(1)(K*h(1)+K*T h(2))+
\(2)

- \ (1)
K*G h(1)& , g(1)�

+=&1 �/_&1 _- \(2)(K*h(2)+K*T h(1))+
\(1)

- \ (2)
K*G h(2)& , g(2)�

(A.18)
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Here ( f, g) denotes the L2(0_R3) scalar product. The operator L is sym-
metric with respect to ( } , g } ) . The terms in the first square brackets are
non positive by the non positivity of the operator L. It is easy to see, by
using the symmetry properties of the Boltzmann kernel [CC], that also the
contribution coming from the terms in the second square bracket are non
positive. Therefore we have

1
2

d
dt

&g&2
L2

�C=&1 &h(2)&r } &g&L2
+; &g&2 L2

2 (A.19)

with r�3. The final estimate is

&g&L2
�C=m&1 &&&1D&r

The same kind of arguments provides the bound for the derivatives of g
with respect to x. Because of the force terms the argument differs from the
one given in [Ca80] in the fact that we have to control at the same time
the derivatives with respect to velocity and space. We sketch the proof for
the derivatives of g. Differentiating the first equation in (A.11) we get two
coupled equations for {v g and {g

�t {g(i)+(v } {) {g(i)+{F (i) } {v g(i)+F (i) } {v({g(i))={N (i)(g, h)

�t {v g(i)+v } {({v g(i))+{g(i)+F (i) } {v({v g(i))={vN (i)(g, h)

where N(g, h) is the r.h.s. of (A.11) for g. Proceeding as before in getting
(A.18) we obtain

d
dt

(&{g&L2
+&{v g&L2

)�c:F (&{g&L2
+&{v g&L2

)+&{N&L2
+&{vN&L2

The derivatives of N with respect to velocity can be estimated by the
methods in [ELM94], where it is proven the identity

�
�v

Q( f, g)=Q \ f ,
�g
�v++Q \g,

�f
�v +

where ���v stands for the partial derivative with respect to any of the com-
ponents of v. The final result is

Lemma A.2. There is an =0>0 finite for each finite :F such that
any solution to the linear problem (A.11), with D and Fi given, satisfies for
j>3, s�3 and any 0<=�=0
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&g(i)&j, s+&�v g(i)&j, s&1

�C(1+:F) =m&s[&&~ &1D(i)&j+2, s+&&~ &1 �vD (i)&j+2, s] (A.20)

&h(i)& j, s+&�vh(i)&j, s&1

�C(1+:F) =m&s+1[&&~ &1D(i)&j, s+&&~ &1 �vD (i)&j, s] (A.21)

Non-linear problem and fixed point argument.

Non-Linear Problem and Fixed Point Argument

The nonlinear equations (A.5) are solved by a fixed point method.
This method works if there is some small parameter in front of the non
linear terms. In (A.5) there are two kinds of non linear terms: the usual
Boltzmann non linear term, which is multiplied by a power of = and the
Vlasov term involving the forces which gives rise to linear and quadratic
terms in the remainders: in fact the forces are given by expressions of the
type

F (1)=K �V f (2)=\K �V _ :
K

n=0

=nf (2)
n &++=mK �V R(2) (A.22)

Hence the non linear term due to the force is small and we can apply the
recursive argument.

The Boltzmann terms are dealt with as in Caflisch [Ca80]. The con-
trol of the force term requires the boundedness of the gradient of the Kac
potential. The result is

Theorem A.3. There is an =0>0 such that the remainders satisfy
for j>3, z=s&(d&1) with s<m and any 0<=�=0

&g(i)& j, z�c=m&s+1, &h(i)&j, z�c=m&s+1 , i=1, 2 (A.23)

Proof. Let R (i)
k be the solution of (A.4) with force

F (i)
k =\K �V _ :

K

n=0

=nf ( j)
n )&++=m(K �V R ( j)

k&1)

:=F (i)
= +=mF� (i)

k , j=i+1 mod 2 (A.24)

and the collision integrals computed with R(i) replaced by R (i)
k&1 ; moreover,

we put R (i)
0 =0, i=1, 2. Lemma A.2 and an inductive argument assure that

the sequences R (i)
k are uniformly bounded for = sufficiently small. In fact,
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setting :� =:F =
(i) , we have :k=:F k

(i)�:� +C=m &Rk&1&1 . By a standard argu-
ment &Rk&1&1 is bounded by a constant *(:k&1) with *( } ) some monotone
function. Hence, :=sup :k satisfies the inequality :�:� +=m*(:). By setting
=m*(2:� )�:� , we conclude :<2:� and hence the uniform boundedness of the
sequences R(i)

k for = sufficiently small.
The differences $R (i)

k :=R (i)
k &R (i)

k&1 can be decomposed again in high
and low velocity parts $gk , $hk , with $gk=($g (1)

k , $g (2)
k ) and $hk=($h (1)

k ,
$h(2)

k ) solve the equations

Dt $gk+(=mF� k&1+F=) } {v $gk=N($gk , $hk)

Dt $hk+(=mF� k&1+F=) } {v $hk=N$($gk , $hk)

where N=(N (1), N (2)), N$=(N$(1), N$ (2)) and N (1), N$ (1) are the r.h.s. in
(A.11) with

D(i)=&= $F� k } {v(gk&1+hk&1)+[J(R (i)
k&1 , R (i)

k&1)&J(R (i)
k&2 , R (i)

k&2)]

+[J(R (i)
k&1 , R ( j)

k&1)&J(R (i)
k&2 , R ( j)

k&2)]

with $F� (i)
k :=(F� (i)

k &F� (i)
k&1)=K �V [R ( j)

k&1&R ( j)
k&2]. By Lemma A.2 the

solutions satisfy (A.20) and (A.21), so that

&$gk& j, s�C=m&s+1 &&~ &1[$F� k } {v(gk&1+hk&1)]& j+2, s (A.25)

&$hk& j, s�=m&s+2 &&~ &1[$F� k } {v(gk&1+hk&1)]&j, s (A.26)

We have

&$F� k } {v(gk&1+hk&1)&2
j0

�C sup
x, v

(1+|v|2) j |{v($gk+$hk)| sup
v

| dx |$F� k | 2

�C | dx } | dv | dy K(x& y)(Rk&1&Rk&2) }
2

�C | dx } sup
v

(1+|v| 2) j | dy K(x& y)($gk&1+$hk&1) }
2

�C } \| dy |K(x& y)|2+
1�2

sup
v

(1+|v| 2) j \| dy |$gk&1+$hk&1| 2+
1�2

}
2

�C[&$gk&1&2
j0+&$hk&1&2

j0]
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To get the second inequality we have used that the norms &{v $gk&j, s and
&{v $hk& j, s are finite by Lemma A.2, so that the supremum over x in the
first row exists finite. The last inequality is a consequence of the fact that
the Kac potential is bounded and that the space integration is on a torus.
Finally, by (A.25) and (A.26) we have

&$gk&j, 0�c=m&s+1&$gk&1&j, s+&$hk&1& j, 0]

&$hk&j, 0�c=m&s+1&$gk&1&j, s+&$hk&1& j, 0]

We remark that it is possible to prove that the norm & }&j, z for the remain-
ders g(i), h(i) are bounded with z=s&(d&1) and s<m. K

APPENDIX B

In this Appendix we show how to bound the remainders which are
solutions of (6.7). The method we use is different from the one in
Appendix A. In fact in this case the lowest order is a global Maxwellian
and we do not need to introduce the decomposition into low and high
velocity. Also in this case we need a Theorem on the regularity of the terms
of the expansion analogous to Theorem A.1.

Theorem B.1. Given =>0, assume that there exists a sufficiently
smooth solution of the incompressible Navier�Stokes equations (5.28) in
(0, t0]. Then there is a constant c>0 and s depending on the smoothness
of the solution of INS such that the terms in the expansion fi , ,i , i=2,..., K
solutions of the Eqs. (6.5) and (6.6) satisfy

& fi &j, s�c, &,i&j, 2�c (B.1)

&�v f i&j, s�c, &�v,i &j, 2�c (B.2)

for any j.
We write (6.7) for the variables R(i), 1=1, 2 defined in (A.3)

�t R(1)+=&1[v } R(1)+F (1) } {vR(1)]

==&2[LR (1)+1R(1)+3R(2)]

+=&1[L1R(1)+12 R(1)+31R (2)]+[L$1R(1)+1 $2R(1)+3 $1R(2)]

+=m&2[J(R (1), R(1))+J(R(1), R(2))+A(1)]
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�t R(2)+=&1[v } R(2)+F (2) } {vR(2)]

==&2[LR (2)+1R(2)+3R(1)]

+=&1[L2R(2)+11 R(2)+32R (1)]+[L$2R(2)+1 $1R(2)+3 $2R(1)]

+=m&2[J(R (2), R(2))+J(R(2), R(1))+A(2)] (B.3)

3, L, 1 are defined as 3� , L� , 1� in the list after (A.4) after substituting the
global Maxwellian M0(\� , T� ) to M� . Finally,

Li g=J( f (i)
1 , g)+J(g, f (i)

1 )], 3i g=J(. (i)
1 , g), 1i g=J(g, f (i)

1 )

L$i g= :
K

h=2

=h&2[J( f (i)
h , g)+J(g, f (i)

h )]

3 $i g=J \ :
K

n=2

=n&2. (i)
n , g+ , 1 $i g= :

K

h=2

=h&2J(g, f (i)
h )

The first step is to consider the linear problem associated to (B.3), namely
to study (B.3) with the last terms D(i) :=J(R(i), R (i))+J(R(i), R( j))+A(i),
i=1, 2, i{ j given and F (1), F (2) fixed, independent of R(1), R (2), Moreover
remembering that the forces vanish to the lowest order in =, we assume that
the L� norms of F (i) and their gradients are bounded by some constant =:F .
The role of the constant :F is similar to the one discussed in the previous
appendix and we do not repeat the iterative argument in this case. We will
just provide an estimate for the L2 norm in (x, v) &R&2 :=&R(1)&2+&R(2)&2

for the solution R=(R(1), R(2)) of this problem, the rest of the argument
being standard (see for example [ELM98]). We put R(i)=- M0 9 (i) so
that

�t 9 (1)+=&1 _v } {9 (1)+F (1) } {v9 (1)&
1
2

9 (1)F (1) } v&
==&2[L9 (1)+G9 (1)+T9 (2)]+=&1[L1R(1)+G29 (1)+T19 (2)]

+[L$19 (1)+G$2 9 (1)+T $19 (2)]+=m&2 D(1)

- M0

(B.4)

where the relation between the old operators L, 3, 1, Li , 3i , 1i , L$i , 3 $i ,
1 $i and the new ones L, T, G, Li , Ti , Gi , L$i , T $i , G$i is of the form

Lf =
1

- M0

L - M0 f
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It is easy to see that, setting &9&2
L2

=&9 (1)&2
L2

+&9 (2)&2
L2

,

1
2

d
dt

&9&2
L2

==&2 _(9 (1), L9 (1))+(9 (2), L9 (2))

&
1
2

= :
2

i=1

F (i) } (9 (i), v9 (i))&
+=&2[(9 (1), M &1�2

0 J(M0 , - M0 9 (2)))

+(9 (1), M &1�2
0 J(- M0 9 (1), M0))

+(9 (2), M &1�2
0 J(M0 , - M0 9 (1)))

+(9 (2), M &1�2
0 J(- M0 9 (2), M0))]

+=&1[(9 (1), L19 (1))+(9 (2), L29 (2))

+(9 (1), (G29 (1)+T19 (2)))

+(9 (2), (G19 (2)+T29 (1)))]+[(9 (1), L$1 9 (1))

+(9 (2), L$29 (2))+(9 (1), (G$29 (1)+T $19 (2)))

+(9 (2), (G$19 (2)+T $29 (1)))]

+=m&2 :
2

i=1
�9 (i),

D(i)

- M0
� (B.5)

First of all, we observe that the terms in the second square bracket are non
positive [CC]. To estimate the other terms we will use the strict negativity
of the operator L (see (4.20)) on the space orthogonal to the collision
invariants and the following estimate on the operator J( f, h) (see for
example [GPS]): for any Maxwellian M and for any y # [&1, 1]

|
R 3

dv
|J(- M f, - M h)|2

&M
�|

R3
dv & | f | 2 |

R3
dv & |h|2 (B.6)

This inequality and the bounds on the fn 's imply the following bounds:

} � :
2

i=1

9 (i)Li9 (i)� }�C " :
2

i=1

- & 9� (i)"2

&9 (i)&L2
&M &1�2

0 f (i)
1 & j, s (B.7)

} � :
2

i=1

9 (i)L$i9 (i)� }�C &- & 9� &L2
&9&L2 "M &1�2

0 :
7

n=2

fn" j, s
(B.8)
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where g� denotes the projection of a function g on the orthogonal to the
invariant space of L, while ĝ is the projection on the invariant space. Note
that the presence of the product &- & 9� &2 &9&2 depends on the fact that Li

and L$i are both orthogonal to the collision invariants.
Similar estimates hold for the terms involving the other operators. By

using the bounds on the fn 's and ,n 's and after some algebra, the terms in
the forth, fifth and sixth rows are bounded by

C &- & 9� &L2
&9&L2

To bound the last term in the first square bracket of (B.5), we note that

=&1 } :
2

i=1

F (i) } (9 (i), v9 (i)) }�:F[&- & 9� &2
L2

+C &9� &2
L2

and we assume = so small that =2:F<1�2.
We integrate (B.5) in time between 0 and t0 . With the notation

9t( } )=9( } , t), we get

1
2 &9t0

&2
L2

�C |
t0

0
dt[&=&2[ 1

2 &- & 9� t &2
L2

+CF &- & 9t&2
L2

]

+C(=&1+1) &- & 9� t &L2
&9t &L2

+=m&2 &D( } , t)&2
L2

] (B.9)

The first term in the second line is due to the bounds (B.7) and (B.8).
Moreover &M &1�2

0 f1&j, s and &M &1�2
0 f1&j, s are bounded by the regularity

of the solutions of the macroscopic equations for 0<t<T0 and
&M &1�2

0 �K
n=2 fn&j, s�C by Theorem B.1.

Using the inequality

&
1
=2 x2+(c1=&1+c2) xy�(c1+c2=)2 y2�4

valid for any positive =, x, y with x=&- & 9� &2 , y=&9& and suitable con-
stants c1 and c2 , we get (since 9( } , 0)=0)

&9( } , t0)&2
L2

�|
t0

0
dt CF [&9( } , t)&2

L2
+&M &1�2

0 D( } , t)&2
L2

]

In conclusion, by the use of the Gronwall lemma, for = sufficiently small,
we get:

sup
0�t�t0

&9( } , t)&L2
�C(t0 , :F) sup

t # (0, t0]

&M &1�2
0 D( } , t)&L2

(B.10)
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The bounds for the Sobolev norm of higher order in x, v are obtained
by studying the equations for the derivatives as explained in Appendix A.
Finally, writing the equations for the remainders in the integral form and
using the property of the linearized Boltzmann operators of improving the
regularity in v, we get the analogous of Lemma A.2.

Lemma B.2. There is an =0>0 such that any solution to the linear
problem (B.4), with D and F i given, after choosing K=2m satisfies for
j>3, s<s0 and any 0<=�=0

&g(i)&j, s+&�vg(i)&j, s&1�=m&2CF[&D(i)&j+2, s+&&~ &1 �vD (i)&j+2, s] (B.11)

&h(i)&j, s+&�vh(i)&j, s&1�=m&2CF[&D(i)&j, s+&&~ &1 �vD(i)&j, s] (B.12)

The dependence on the force in the bounds (B.11), (B.12) does not
affect the argument given in Appendix A to solve the non-linear problem,
because in the bounds for Rk the constant CFk

will depend on the norm of
Rk&1 .

APPENDIX C

To show formally the convergence of the microscopic one particle dis-
tribution functions to the solution of the VBE in the Grad�Boltzmann
limit, let us consider the hierarchy for the rescaled correlation, functions
rjr , jb

of jr particles of species r and jb of species b, defined as

rjr , jb
(z r

1 ,..., z r
jr
; zb

1 ,..., zb
jb

; {)

=$&( jr+ jb) Nr !
(Nr& jr)!

Nb !
(Nb& jb)!

_|
(4_R3)(N& jr& jb)

dz r
jr+1 } } } dzr

Nr
dzb

jb+1 } } } dzb
Nb

_+N($&1q r
1 , vr

1 } } } , $&1qr
jr
, vr

jr
; $&1qb

1 , vb
1 } } } , $&1qb

jb
; $&1{)) (C.1)

where z:=(q:, v:) is the phase space point of a particle of species : and +N

is the probability distribution solution of the Liouville equation

�{m
+N+ :

N

i=1

vi } {!i
+N&Al :

:{;

:
N:

i=1

:
N;

j=1

{!i
:Ul( |!:

i &!;
j | ) } {vi

: +N=0
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which is valid in 1N , i.e., where the hard spheres do not overlap. On the
boundary of 1N we assume the boundary conditions

+N(!1 , v1 ,..., !N , vN ; {m)=+N(!1 , v1 ,..., !i , v$i ,..., !j , v$j ,..., !N , vN ; {m)

if

|!i&!j |=1, i{ j

where v$i=vi&|[| } (vi&vj )], v$j=vj+|[| } (vi&vj )] with | the unit
vector directed as !i&!j . The above conditions merely state the conserva-
tion of the probability during an elastic collision. As pointed out before,
contacts of more than two particles have null Lebesgue measure, so they
do not affect above definition.

The rescaled correlation functions satisfy a hierarchy of equations of
the form

�{rjr , jb
+ :

jr

i=1
_vr

i } {qi
r rjr , jb

+$3 :
jb

j=1

{qi
r V#( |q r

i &qb
j | ) } {v i

r rjr , jb&
+ :

jb

i=1
_vb

i } {qi
b rjr , jb

+$3 :
jr

j=1

{qi
b V#( |qb

i &qr
j | ) } {v i

b rjr , jb&
= :

jr

i=1

[Br, r
$, irjr+1, jb

+Bb, r
$, i rjr , jb+1+Vb, r

i rjr , jb+1]

+ :
jb

i=1

[Bb, b
$, i rjr , jb+1+Br, b

$, i rjr+1, jb
+Vr, b

i r jr+1, jb
]

where, with the notation z
� k=(z1 ,..., zk), we have

(Br, r
$, ir jr+1, jb

)(z
�
r
jr
; z

�
b
jb
)

=|
R3

dvr
jr+1 |

S2
+

d|(v r
jr+1&vr

i ) } |[rjr+1, jb
((z

�
r
jr+1)$; z

�
b
jb

)

&rjr+1, jb
(z

�
r
jr+1 ; z

�
b
jb
)]

with

S 2
+=[| # R3 | |||=1, | } (vr

jr+1&vr
i )>0]

(z
�
r
jr+1)$=(zr

1 ,...(zr
i )$,..., z r

jr
, (zr

jr+1)$)

z
�
r
jr+1 =(z r

1 ,..., z� r
i ,..., z r

jr
, z� r

jr+1)
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and, for any z, z
*

, the phase points z$, z$
*

, z� and z�
*

are defined by

q$=q, q$
*

=q+$|, v$=v&|(| } (v&v
*

)

v$
*

=v
*

+|(| } (v&v
*

), q� =q, q�
*

=q&$|, v� =v, v�
*

=v
*

Moreover,

(Bb, r
$, i rjr , jb+1)(z

�
r
jr
; z

�
b
jb
)

=|
R 3

dvb
jr+1 |

S2
+

d|(vb
jb+1&vr

i ) } |[rjr , jb+1((z
�
r
jr
)$; (z

�
b
jb+1)$)

&rjr , jb+1(z
�

r
jr
; z

�
b
jb+1 )]

where

(z
�
r
jr
)$=(zr

1 ,...(zr
i )$,..., z r

jr
), (z

�
b
jb+1)$=(zb

1 ,..., zb
jb

, (zb
jb+1)$)

z
�

r
jr

=(zr
1 ,...z� r

i ,..., zr
jr
), z

�
b
jb+1 =(zb

1 ,..., zb
jb

, z� b
jb+1)

The collision terms Bb, b
$, i and Br, b

$, i are defined in a similar way. Further-
more

(Vb, r
i rjr , jb+1)(z

�
r
jr
; z

�
b
jb
)

=&|
R 3

dvb
jr+1 |

4
dqb

jb+1 #3 {qi
r U#( |qr

i &qb
jb+1 | ) {v i

r rjr , jb+1(z r
jr
; z

�
b
jb+1)

and a similar expression for Vr, b
i . Taking formally the limit $ � 0, the

limiting correlations satisfy the following Vlasov�Boltzmann hierarchy:

�{rjr , jb
+ :

jr

i=1

vr
i } {qi

r rjr , jb
+ :

jb

i=1

vb
i } {q i

brjb , jb

= :
jr

i=1

[Br, r
i rjr+1, jb

+Bb, r
i rjr , jb+1+Vb, r

i rjr , jb+1]

+ :
jb

i=1

[Bb, b
i rjr , jb+1+Br, b

i rjr+1, jb
+Vr, b

i rjr+1, jb
] (C.3)
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where,

(Br, r
i rjr+1, jb

)(z
�
r
jr
; z

�
b
jb
)

=|
R3

dv r
jr+1 |

S2
+

d|(vr
jr+1&vr

i ) } |[rjr+1, jb
(z

�
r
jr+1)$; z

�
b
jb
)

&rjr+1, jb
(z

�
r
jr+1 ; z

�
b
jb
)]

and, for any z, z
*

, the phase points z$, z$
*

are defined by

q$=q, q$
*

=q, v$=v&|(| } (v&v
*

), v$
*

=v
*

+|(| } (v&v
*

)

Similar modifications provide the other terms of the Vlasov�Boltzmann
hierarchy.

It is easy to see that if the initial condition of molecular chaos

rjr , jb
(z

�
r
jr
; z

�
b
jb

; 0)= `
jr

i=1

f r(zr
i , 0) `

jb

k=1

f b(zb
k , 0)

is satisfied, then the correlation functions stay factorized at positive times
{ and f r(q, v, {) and f b(q, v, {) are the solutions of the coupled Vlasov�
Boltzmann equations

�{ f r(q, v, {)+v } {q f r(q, v, {)+F r } {v f r(q, v, {)=J( f r, f r+ f b)
(C.4)

�{ f b(q, v, {)+v } {q f b(q, v, {)+F b } {v f b(q, v, {)=J( f b, f r+ f b)

where

F r(q, {)=&{q |
0

dq$ #3({U#)( |q&q$| ) |
R 3

dv f b(q$, v, {) (C.5)

F b(q, {)=&{q |
0

dq$ #3({U#)( |q&q$| ) |
R 3

dv f r(q$, v, {) (C.6)

and

J( f, g)=|
R 3

dv
* |

S2
+

d|(v&v
*

) } |[ f (v$) g(v$
*

)& f (v) g(v
*

)] (C.7)

Summarizing, we obtained formally the Vlasov�Boltzmann equations
for a binary mixture, where the Boltzmann collision kernel terms are due
to the short range interaction while the Vlasov self consistent force is due
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to the repulsive weak long range interaction. If, instead of the hard core
interaction the short range force is given by a finite range potential, we
would get formally the same equations but with a different cross section.

We want to stress that an important step is missing in order to make
the above derivation rigorous. The first rigorous result on the derivation of
the Boltzmann equation has been given by Lanford [Lan] where the con-
vergence of the correlation functions is proven in L� -norms. On the other
hand, the derivation of the Vlasov equation is based on the use of the
variation norm and we have not been able to find a norm suited for both
terms. The only related result, as far as we know, has been obtained in
[GM] and is about a stochastic particle systems converging to a Vlasov�
Boltzmann equation with a modified Boltzmann kernel (Povzner). The
proof is based on martingale methods. In the linear case of a Lorentz gas
with a Kac potential term it is possible to prove the convergence to a
Boltzmann equation with a linear collision term and a non-linear self-con-
sistent force term [MR].
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